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Abstract: Metallic substances have been used for the therapeutic purposes since ancient
times. Serendipitous discovery of cisplatin as an anticancer agent apparently initiated the
use of metal complexes as chemotherapeutic agents for the treatment of cancer. Later on,
many other metal complexes such as gold, silver, ruthenium, arsenic, titanium,
manganese, palladium, gallium, aluminum, etc. has been investigated, studied and
approved for cancer treatment. Many metal complexes have been synthesized by
redesigning existing drug models through metal-ligand exchange or by developing an
entirely new drug with enhanced cytotoxic activity and safety profile. Metal-based
anticancer drugs offer distinct characteristics over other chemotherapeutic agents. These
characteristics include forming DNA adducts, redox activity, photodynamics of metal
coordination complexes, selective targeting, protein binding, metal-ligand exchange,
structure and bonding. Herein, we have reviewed metal complexes as chemotherapeutic
agents, general mechanism of cancer cell killing pathways of metal complex anticancer
agents, superiority of metal complexes over other anticancer agents, etc.

Keywords: Cancer, Chemotherapeutic, Metal Complex, Apoptosis, Redox Activity,
Photodynamic

1. Introduction

From ancient to modern times, the use of metallic substances for
therapeutic purposes has been quite substantial [1][2]. In ancient times, people
knew the importance of metallic compounds for therapeutic purposes, and
people of different regions and ethnicities used different kinds of metallic
compounds. The ancient Chinese, Egyptians, Indians and Assyrians used metal-
based compounds to treat diseases and ailments [3]. Now, in this modern age,
many metallic compounds are used as anti-cancer agents. For examples, the
metal-based anti-cancer drugs Cisplatin [4], Auranofin [5], Zinc Oxide
complexes [6], Copper (II) complexes [7], Silver nanoparticles [8], Vanadium
compounds [9], Iron Chelators [10] are some of the well-known metal-based
compounds used in modern anti-cancer therapy. Currently many studies are
being carried out on several metal-based compounds that have potential in cancer
therapy. Some of these metallo-drugs are undergoing clinical trials for cancer
treatment and tumor detection, whereas some have already approved for cancer
treatment.

Metal-based compounds have unique chemical, physical, and biological
properties that differentiate them from other anti-cancer drugs as well as provide
distinct superiority over other anti-cancer drugs in many cases. Due to their
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unique characteristics, metal-based compounds garnered so much attention and interest as therapeutic agents in
cancer treatment [11]. Metal coordination complexes such as platinum-based compounds (Cisplatin) can form
DNA adducts (ability to covalently crosslink DNA bases and forming intrastrand and interstrand crosslinks) that
interfere with DNA repair mechanisms, causing DNA damage, and eventually inducing Type-I programmed cell
death, apoptosis in cancer cells [12]. Redox activity (reduction and oxidation reactions) of metal coordination
complexes such as copper complex can generate reactive oxygen species (ROS) within the cancer cells and
elevate the levels of (ROS) which can lead to DNA damage and eventually cell death [13] [14]. Photodynamics
of metal coordination complexes (titanium oxide in aqueous media upon exposure to UV light) is capable of
generating reactive oxygen species (ROS), leading to cellular DNA damage and subsequently cell death [15].
Thioredoxin reductase (TrxR), catalyze the anti-oxidative system in cells and prevention of cell death. Selective
targeting of metal complexes such as gold complex Auranofin selectively targets and inhibits TrxR which
imbalances the intracellular redox state generating ROS and eventually inducing DNA damage and cell death by
apoptosis [5]. Palladium (1) complexes can bind to various proteins in a cancerous cell and initiate a cytotoxic
event within the cell leading to cellular demise [16]. Metal-ligand exchange properties of ruthenium compounds
such as half-sandwich Ru-arene complexes can undergo ligand exchange reactions resulting in a compound that
has a specific structure and can selectively target cancer cells and thus ameliorating toxicity against normal cells)
[17].

Metal-based compounds can readily lose electrons and become positively charged ions that may interact
with biological molecules and make complexes. In human body, metals like iron and copper have crucial
functions, such as carrying oxygen and electrons to cells, which help to generate energy. Metals like calcium and
magnesium can support the protein and tissues of the body and participate in structural functions. Metals also
have functions in our body's metabolic regulations, electrolyte balance and antioxidant defense [18][19][20][21].
In contrast to bioorganic or bio-macromolecular derived drugs, metallic compounds provide a platform for unique
metal-based drug designing and molecular modifications. These bioactive metal-based compounds thus enable
the formation of bioactive substances with unique and effective mechanisms of action with significantly fewer
side effects compared to bioorganic substrates [22][23].

This article reviews the general mechanism of action of metal-based drug compounds, their various types
with summarized FDA-approved and under clinical trial drugs, their advantages and superiority over bioorganic
substrates and the advancement of metal-based drugs. This paper has also reported pharmacological actions such
as anticancer activity on different cell lines, side effects, and cancer cell death rates. Lastly, the paper gives an
idea about the future perspective of metal-based drugs.

2. Advantages and Superiority of Metal-based Compounds

Metal-containing carbon-based compounds such as carboplatin [26] and non-carbon-based compounds
such as cisplatin [12] have several benefits over purely carbon-based organic molecules in synthesizing novel
therapeutic drugs. These benefits stem from their capacity to organize ligands in a three-dimensional arrangement,
allowing the functionalization of groups that may be tuned to specific molecular targets [41][42]. Metal-based
complexes provide a rich environment for developing a range of different molecular structures that bestow a
broad spectrum of coordination numbers, geometries, and kinetic characteristics that are not possible with carbon-
based compounds [43][44]. Transition metals' partly filled d orbitals give unique electrical characteristics that
might serve as valuable probes in creating anticancer drugs [45]. The oxidation state of a metal is also a significant
factor in the design of coordination compounds because it allows for participation in biological redox chemistry
and influences the optimum dosage and bioavailability of the drug supplied [46][47]. Furthermore, the capacity
to perform ligand-exchanged reactions allows metals to interact and coordinate with biological molecules, as the
widely used medication cisplatin [41]. Most noteworthy is the development of radiopharmaceuticals that exploit
the radioactive characteristics of metals, which are extensively utilized in detecting cancer and other therapeutic
purposes [48].
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2.1 Diverse mode of action:

Metal-based anticancer drugs frequently have many modes of action, including DNA binding, the
production of reactive oxygen species (ROS) by redox-active and biocatalyst mechanism, the photodynamic and
the photoactivated mechanism in which again ROS are formed, and targeting the cellular signaling transduction
pathways. All these mechanisms of action eventually lead to the crosslinking of DNA, cell cycle arrest,
cytotoxicity and apoptosis [49].

2.2 Selectively targeting organelles

Metal-based compounds are flexible structures with a high degree of versatility due to their diverse
oxidation states, coordination geometries, and the broad spectrum of organic ligands linked to the metal core.
Ligand functionalization can affect cellular absorption, accumulation, and biomolecule targetability. Modifying
the ligands may adjust the metal core's photophysical, electrochemical, and spectroscopic characteristics. This
enables them to target the cell's internal and external components [50]. Intracellularly, metal-complex drugs can
bind to nucleic acids, mitochondria, endoplasmic reticulum, and ribosomes. Anticancer medicines, such as Au(l)
(phosphine), can increase the reactive oxygen species (ROS) within the cells and can directly target mitochondrial
and nucleic acid functioning, providing considerable advantages over typical chemotherapy treatments, which
cause mitochondrial failure indirectly by using damaged DNAs to create apoptosis-initiating signals [51].
Extracellularly, metal-complex drugs can bind to cell membranes and cell receptors, such as the coupling of the
metal-complex ruthenium polypyridyl subunits and Epidermal Growth Factor Receptor 1 (EGFR)-inhibiting
4-anilinoquinazoline ligands results in a class of highly active dual-targeting anticancer drugs that can induce
apoptosis [52].

2.3 Enhanced bioavailability and stability of metal-based drugs

Metal-based anti-cancer drugs have more stability and solubility than organic compounds, which increases
their therapeutic efficiency, and minimizes dosing frequency. Coordination bonds as a connection between the
metal and its ligands allows the formation of a stable structure non-susceptible to hydrolysis and other
degenerative mechanisms, giving the chemical compound stability in different physiological states. This is
because it enables the development of prodrugs and controlled release formulations such as oxaliplatin that are
not susceptible to fast degradation compared to drugs such as cisplatin to allow for close and flexible monitoring
of the drug’s activity in the body. Furthermore, the solubility of the metal-based complexes is another factor that
minimizes the degradation of the drug before it gets to the target organs so that a higher proportion of the drug
administered has the maximum effect [53][54].

3. Positive Side Effects of Metal-based Anticancer Drugs

While the main target of the metal-based anticancer drug is to prevent the cancer cell proliferation and
growth, some metal-based drugs are designed in a way that they exhibit positive auxiliary action While the main
target of metal-based anticancer drugs is to prevent cancer cell proliferation and growth, some metal-based drugs
are designed in a way that exhibits positive auxiliary actions.
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Table 1. Examples of Some Approved Metal-based Drug
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3.1 Anti-metastatic property of metal-based anticancer drug

Selenosemicarbazone Complexes with Metals is an example of a drug that shows an anti- metastatic effect,
which is the drug's ability to prevent the proliferation of cancer cells and metastasize in other parts of the body.
Manja Zec et al. reported the modulation of matrix- metalloproteinase 2 and 9 (MMP-2 and MMP-9) activity in
cancer cell lines by metal complexes with 2-formylpyridine-selenosemicarbazone. It was seen that when the HeLa
cell lines were treated with the ligands, the activity and growth of the MMP-2 dropped significantly compared to
the non-treated cell. While the main target of metal-based anticancer drugs is to prevent cancer cell proliferation
and growth, some metal-based drugs are designed in a way that exhibits positive auxiliary actions [55].

3.2 Anticancer potential of immunomodulatory metal-based drugs

Some metal-based anticancer medications can affect the immune response, possibly assisting the body in
recognizing, destroying, and regulating cancer cells within the body. This immunomodulatory impact of the
medication can supplement its cytotoxic potential, making it considerably more effective. Some anticancer metal
medicines based on platinum, ruthenium, copper, and gold have been found to affect cancer and tumour cells via
Immunogenic-Cell Death (ICD). These metal-based medicines enhance tumour-specific immune response and
induce IFN-y mediated immune response, including cytotoxic T cells (CTLs) and yd T cells that eliminate
remaining tumour cells [56].

3.3 Radiosensitization of metal-based anticancer drugs

It has been found that some metal-based drugs can increase the sensitivity of cancer or tumour cells to
radiotherapy, thus increasing its efficiency. Some platinum complexes such as cisplatin, oxaliplatin and
carboplatin are used in chemotherapy and chemo-radiotherapy, and it has been found that they have
radiosensitizing and synergistic effects for ionizing radiation. For instance, Kobayashi et al. found that when
chloroterpyridine platinum (PtTC) bound to plasmid DNA were placed in an aqueous solution, it could enhance
the X-ray-induced breaks in DNA [57].

4. Categories of Potential Anti-Cancer Metal Complexes Based on the Metal Used

Due to their unique chemical characteristics and possible therapeutic uses, metal complexes have garnered
much attention in anti-cancer research. Anti-cancer drug complexes can be divided into groups according to their
metal ion. Effective anti-cancer drugs that bind to DNA and cause apoptosis are platinum-based complexes like
carboplatin and cisplatin, which have been investigated and utilized extensively. Similarly, chemicals like
RM-175 [49][58] and KP1019 [59] showed specific toxicity against cancer cells, demonstrating the promising
anti- cancer effect of ruthenium complexes. Likewise, to generate innovative drugs and offer a variety of
mechanisms of action, other transition metals such as iron, copper, and gold have also been investigated for their
anti-cancer effects [60][61]. Gold complexes like auranofin [62], sodium aurothiomalate [63], and aurothiomalate
have shown promising results in their anti-cancer activity in clinical trial phases. Palladium and Titanium
complexes like WSTO09 [64] and WST11 [64][65], Titanocene dichloride [66] and Titanium (IV) Salan [67],
respectively, have shown cytotoxic effects, giving rise to the hope of being used as an anti-cancer agent. Palladium
complexes WST09 and WST11 are already approved for clinical use in the European Union, Norway, and Iceland
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[64] and are marketed in Russia, Israel, Mexico, the EU, and EEA [64][65], respectively. The FDA has already
approved the aluminium complex Photosens (Sulfonated Aluminum Phthalocyanine), which is out for clinical
use [38][39]. The logical and proper design, synthesis and use of the anti-cancer metal complexes holds great
promise in the selective and targeted cancer therapy.

Table 2. Categories of metal complexes based on metal used

Platinum Complex Gold Complex |Titanium Complex Palladium based
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5. Metal Complexes Currently Undergoing Clinical Trial

The first metal-based anticancer drug, cisplatin was discovered in 1960 and after that went through rigorous
clinical trials to be first approved in 1978 [74]. Currently, cisplatin is the most widely used anticancer drug for
the treatment of advanced ovarian cancer, testicular cancer, and bladder carcinoma [75][76]. Nowadays, many
drugs are being studied for their anticancer properties, and of them the metal-based anticancer drugs seem to be
very promising for their potential anticancer properties, though comparatively only a few selected metal-based
anticancer drugs have been approved by FDA and other regulatory authorities. Currently many metal-based drugs
are undergoing in vitro and in vivo study as well as clinical trials. Table 3 highlights some of the Metal-based
anticancer drugs undergoing different phases of clinical trial.
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Table 3. Metal complexes currently undergoing clinical trial
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6. Conclusion

Metal-based anti-cancer drug possesses a potential area in the field of cancer therapies. Distinct
physicochemical and biological characteristics of metal-based drugs, such as their capacity to target specific
biological processes and coordination geometries, allow for a more customized approach to cancer treatment.
These chemicals, ranging from platinum-based chemotherapeutics like cisplatin to developing prospects like
ruthenium and gold complexes, have exceptional anticancer potential. The addition of metal-based medications
to the oncological arsenal represents a significant move towards precision medicine, opening up new pathways
for tailored and targeted therapy. As research progresses, the synergy between metallodrugs and traditional
treatments may pave the way for more successful and acceptable cancer medicines, bringing up closer to a future
in which cancer is battled with more precision and efficacy. However, possible toxicity and resistance of metal
complexes may require more study and development of metal-based anticancer drugs.
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