

Original Article

# **Evaluation of Bioactive Compounds from Various Citrus Fruits in Bangladesh** and Evaluation of Their Effect as Antioxidant and on Glucose Metabolizing Enzymes

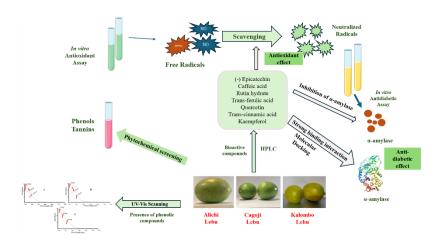
Mirza Alimullah<sup>1</sup>, Asif Ul Haque Shuvo<sup>1</sup>, Md. Delower Hossain<sup>1</sup>, Khondoker Shahin Ahmed<sup>2</sup>, Hemayet Hossain<sup>2</sup>, Abdullah Al Rakib<sup>3</sup>, Kazi Akramuddaula<sup>4</sup>, Md. Ashraful Alam<sup>1</sup>, Nusrat Subhan<sup>1\*</sup>

<sup>1</sup>Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh <sup>2</sup>BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh <sup>3</sup>Department of Leather Engineering, Khulna University of Engineering and Technology <sup>4</sup>Pharmacy Discipline, Khulna University \*Correspondence E-mail: nusrat.subhan@northsouth.edu

Citation: Alimullah, M., Shuvo, AUH, Hossain, M.D., Ahmed, K. S., Hossain, H., Akramuddaula, K, Alam, M. A, Subhan, N., Evaluation of bioactive compounds from various citrus fruits in Bangladesh and evaluation of their effect antioxidant and on glucose metabolizing enzymes in vitro. J. Bio. Sci. Exp. Pharmacol. 2024, 2(1), 46-64. https://doi.org/10.62624/JBEP00.0010

Academic Editor: Dr. Md. Nazmul Hasan

Received date: April 18, 2024 Accepted date: June 21, 2024 Published date: July 15, 2024


Publisher's Note: JBEP stays neutral regarding jurisdictional claims in published maps and institutional affiliations.



Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/ by/4.0/).

Abstract: Synthetic antioxidants are used against oxidative stress and nitrosative stress, which have many harmful effects and possess lower efficacies; hence, the interest of using natural antioxidants such as citrus fruits as therapeutic tools exist. This study set out to assess the flavonoids identified from various citrus fruits in Bangladesh (cagoji lebu, kalombo lebu, and alichi lebu) as antioxidants and their effect on α-amylase inhibitory activity in in vitro condition. Phytochemical screening, UV-vis spectra and HPLC-DAD analysis were performed to determine the class, nature and identity of bioactive components. Antioxidant potential was determined by determining the total phenol content, flavonoid content, ortho diphenol content, DPPH free radical scavenging assay and nitric oxide scavenging assay.  $\alpha$  -Amylase inhibitory assay was done to evaluate the effect on glucose metabolizing enzymes. Molecular docking was done for alpha-amylase enzyme affinity. Phenols and tannins were found in 3 citrus extracts and all the extracts are composed of flavonoid compounds as they provided clear peaks at 280 nm and/or 330 nm in the UV-vis scan data. HPLC analysis showed the presence of (-) epicatechin, caffeic acid, rutin hydrate, trans-ferulic acid, quercetin, and kaempferol in all 3 extracts, and trans-cinnamic acid in cagoji and kalombo lebu. The three extracts show significant phenolic content, the amount for alichi, cagoji and kalombo lebu were 13.958±0.001, 13.380±0.0005, 11.773±0.001 mg GAE/ g DW respectively; flavonoid contents were 3.324±0.0005, 2.827±0, 7.589±0 mg QAE/ g DW respectively and ortho diphenol contents were 0.124±0, 0.185±0.118, 0.161±0 mg CAE/ g DW respectively. The extracts of three citrus fruits exhibited the comparable antioxidant activity for both DPPH and NO scavenging methods compared to ascorbic acid. In the *in vitro* α-amylase inhibitory activity assay, the IC50 values of alichi, cagoji and kolombo lebu were 56.45, 39.97 and 55.31µg/mL respectively whereas the IC<sub>50</sub> value of acarbose was 25.53 µg/mL. This investigation revealed that these three citrus fruits in Bangladesh are potential sources of bioactive compounds which can be used as alternative supplements for natural antioxidants.

**Keywords:** Citrus; bioactive compounds; antioxidants;  $\alpha$ -amylase



Graphical abstract: The phenolic compounds are strong scavengers of free radicles and inhibited the  $\alpha$ -amylase activity.

#### 1. Introduction

Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are byproducts of regular cellular metabolism with a variety of physiological functions. Nonetheless, excessive ROS and RNS generation and a lack of both enzymatic and non-enzymatic antioxidant defense systems occur during oxidative stress, which eventually results in cellular malfunction and death [1]. In recent years, many diseases have appeared and are mainly due to "oxidative stress" and "nitrosative stress". Evidences that ROS accumulation in biological systems causes oxidative tissue damage and affects cellular integrity [2]. Lipid peroxides, singlet oxygen, superoxide anion, and hydroxyl radical are a few of them. Elevated ROS levels can harm lipids, proteins, DNA, and RNA among other components since they are highly reactive [3]. Oxidative damage caused by ROS has often been the origin of the pathogenesis of several diseases such as aging, arthritis, cancer, inflammation, diabetes and heart diseases [4]. Many antioxidants and ROS scavengers, both synthetic and natural, have been created and researched recently in order to protect biomolecules against the damage by ROS [5]. The most widely used synthetic antioxidants are butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, and tert-butylhydroquinoneare; these substances are known to have the ability to inhibit free radicals in the human body, but they can also be harmful and pose a risk for liver damage, fatal hemorrhages and carcinogenesis in laboratory animals [6-8]. Moreover, despite their higher manufacturing costs, certain synthetic antioxidants have lower efficacies than natural antioxidants [9]. Therefore, finding naturally occurring antioxidants and studying their pharmacological effects through in vitro and in vivo studies is the most important and urgent research for the safety of human life.

Citrus is one of the world's major horticultural crops, with a global production of 100 million metric tons per year due to their multiple health benefits, refreshing scent, and flavor [10]. Citrus fruits have been known for sources of natural antioxidants Vitamin-C for many years. Recently, citrus flavonoids are considered as valuable bioactive compounds showed strong antioxidant and anti-inflammatory activities [11]. Phenolic chemicals, particularly flavonoids and phenolic acids, are abundant in the peels of citrus fruits. Studies on the effects of nutrition on living things have shown that citrus flavonoids are safe and harmless [12]. Naturally occurring flavonoids, which are mostly found in peel, are also abundant in citrus plants. Citrus fruits are rich in bioflavonoids, which are the most well-known agents that protect cancer. These natural substances include hesperidin, narirutin, naringin, neohesperidin, eriocitrin, neoeriocitrin, rutin, diosmin, neoponcirin, and nobiletin [13]. Because of their antioxidant action, natural polyphenols have a positive impact on health. They can eliminate free radicals, chelate metal catalysts, activate antioxidant enzymes, lower α-tocopherol radicals, and block oxidases [14]. Numerous pharmacological effects of these flavonoids include protection against coronary heart disease, suppression of important enzymes in mitochondrial respiration, and anti-spasmolytic, anti-inflammatory, antioxidative, vascular, estrogenic, cytotoxic, antitumor, and antibacterial actions [15]. Citrus flavonoids,

naringin and hesperidin showed protective effect in diabetes and in obesity [16]. A class of metabolic disorders known as diabetes mellitus is typified by persistently high blood sugar levels brought on by deficiencies in either insulin production, insulin action, or both. Furthermore, as mitochondrial ATP generation is required for hormone secretion, ROS may influence the long-term decline of insulin secretory capability at the islet β-cell level. Additionally, it seems that adipose, liver, and muscle tissue's sensitivity to insulin is significantly influenced by mitochondrial function. One of the most popular methods for lowering or postponing the intestinal absorption of glucose is to suppress enzymes that hydrolyze carbohydrates, like  $\alpha$ -amylase [17, 18]. One of the most effective inhibitors of the enzymes that hydrolyze carbohydrates, acarbose, is commonly linked to adverse effects such acidity, diarrhea, bloating, fatigue, cramps, and stomach pain [19]. As strong antioxidants, these citrus flavonoids can protect against free radicles mediated damage to the tissues in diabetes and obesity condition. Moreover, citrus flavonoids may protect pancreatic beta cells from oxidative stress and restored the insulin production as well as reduced the insulin resistance in the muscles and peripheral organs [20]. However, their mechanism in glucose lowering effect in diabetes is still not explained properly. α-amylase and β-glucuronidase are important enzymes responsible for the breakdown of carbohydrate and make glucose available in plasma [21]. A vital digesting enzyme is pancreatic α-amylase. Majority of human starch digestion is caused by this calcium-based metalloenzyme, which functions as a catalyst and helps break down the α-1,4 glycosidic linkages of polysaccharide molecules like glycogen, amylose, amylopectin, and other maltodextrins [22]. In diabetes, inhibition of these enzymes may reduce the glucose production from carbohydrate digestion and reduces the plasma glucose concentration. This investigation will thus, evaluate the citrus fruits extract for the presence of flavonoids as antioxidants and their effect on  $\alpha$ -amylase inhibitory activity in *in vitro* condition. Moreover, this investigation will also focus on the comparison of various citrus fruits extracts found in Bangladesh.

## 2. Materials and Methods

## 2.1 Collection of plant materials

Cagoji lebu, *Citrus aurantifolia*; kalombo lebu, *Citrus sinensis*; and alichi lebu, *Citrus limon* fruits were collected from the local market from Dhaka city, Bangladesh. The fruits were authenticated by the experts in National Herbarium, Mirpur, Dhaka, Bangladesh. The voucher specimen was preserved and accession numbers for these plants are DABC 99123, DABC 99125, and DABC 99126 respectively.

## 2.2 Extract Preparation from Citrus Peel Powder

By collecting the 3 different types of (Cagoji lebu, *Citrus aurantifolia*; Kalombo lebu, *Citrus sinensis*; and Alichi lebu, *Citrus limon*) citrus peels, it was cut into small pieces, washed with tap water properly, and dried in open air. The dried peels were then grinded into coarse powder. After that it was put into the jar and added enough ethanol (70% v/v) to make sure that all the peel powder was soaked in the solvent ethanol. After 10 days, it has been observed that the solvent color is changed. Then, the extract was separated from the remaining debris portion by using a funnel and cotton. The extract was then put into the rotary evaporator so that all the ethanol could be separated from the extract. After separation of ethanol from the extract, a dense sticky extract was found. Then it was collected in a petri dish for further test.

#### 2.3 Quantitative and Qualitative Analysis Through HPLC

#### 2.3.1 Chemicals

Gallic acid, 3,4-dihydroxybenzoic acid, catechin hydrate, catechol, (-) epicatechin, caffeic acid, vanillic acid, syringic acid, rutin hydrate, *p*-coumaric acid, trans-ferulic acid, rosmarinic acid, myricetin, quercetin, trans-cinnamic acid and kaempferol were purchased from Sigma–Aldrich (St. Louis, MO, USA). Acetonitrile (HPLC), methanol (HPLC), acetic acid (HPLC), and ethanol was obtained from Merck (Darmstadt, Germany). α-amylase, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and naphthyl ethylenediamine dihydrochloride was obtained from Sigma-Aldrich Chemical Co. (USA). Starch soluble (extra pure) was obtained from J.T. Baker Inc., Phillipsburg, USA. Other chemicals and reagents used were of analytical grade.

## 2.3.2 HPLC Analysis

Detection and quantification of selected polyphenolic compounds in citrus peels extracts were determined by HPLC-DAD analysis as described by Ahmed et al. (2021) with some modifications [23]. HPLC analysis was performed on a LC-20A (Shimadzu, Kyoto, Japan) equipped with a binary solvent delivery pump (LC-20AT), an auto sampler (SIL-20A HT), column oven (CTO-20A) and a photodiode array detector (SPD-M20A) and controlled by the LC solution software (Lab Solution Separation was performed using Luna C18 (5 $\mu$ m) Phenomenex column (4.6 x 250 mm) at 33°C. The mobile phase composed of A (1% acetic acid in acetonitrile) and B (1% acetic acid in water) with gradient elution: 0.01-20 min (5-25% A), 20-30 min (25-40% A), 30-35 min (40-60% A), 35-40 min (60-30% A), 40-45 min (30-5% A), and 45-50 min (5% A) was used in this study. The sample injection volume was 20 $\mu$ L, and the flow-rate was set at 0.5 mL/min. The UV detector was set at 270 nm and applied for validation of method and analysis. The mobile phase was filtered through a 0.45  $\mu$ m nylon 6, 6 membrane filter (India) and degassed under vacuum. For the preparation of calibration curve, a standard stock solution was prepared in methanol containing Gallic acid (20  $\mu$ g/ml); 3,4-dihydroxybenzoic acid (15  $\mu$ g/ml); catechin hydrate (50  $\mu$ g/ml); catechol, (-) epicatechin, rosmarinic acid (30  $\mu$ g/ml each); myricetin, kaempferol (8  $\mu$ g/ml each); trans-cinnamic acid (4  $\mu$ g/ml).

#### 2.4 DPPH Radical Scavenging Assay

In HPLC grade methanol, a DPPH solution (0.004% w/v) was prepared [24]. To make the stock solution (500  $\mu$ g/mL), the crude extracts were combined individually with milliQ water. One mL extracts were taken to the test tubes to make serial dilution of different concentrations (12.5  $\mu$ g/mL to 500  $\mu$ g/mL). The freshly made 1 mL DPPH solution (0.004% w/v) were added to each test tube. 10 minutes of incubation period was given and all test tubes were placed in a dark place. The absorbance was measured at 515 nm using a spectrophotometer (HACH 4000 DU UV-visible spectrophotometer). As a reference standard, ascorbic acid was dissolved in milliQ water to create a stock solution with the same strength (500 mg/mL). Percent scavenging of the DPPH free radical activity was measured by using the following equation:

% of inhibition = [(absorbance of the control – absorbance of the test sample) / absorbance of the control] X 100 Lower absorbance of the reaction mixture indicates higher free radical-scavenging activity. All the tests were performed as triplicates.

# 2.5 Nitric Oxide (No) Radical Scavenging Assay

For NO radical scavenging assay, a previously described method was used [25]. At a physiological pH, sodium nitro-prusside solution produced nitric oxide (NO) radicals. In phosphate buffer, 1 ml of sodium nitroprusside (10 mM) was combined with 1 ml of ethanolic extracts of various concentrations (12.5 - 150 g/ml) (pH 7.4). 150 minutes were spent incubating the mixture at 25°C. Griess' reagent (1% sulphanilamide, 2% o-phosphoric acid, and 0.1% naphthyl ethylene diamine dihydrochloride) was added to 1ml of the incubated solution. The absorbance was measured at 546 nm, and the formula for % inhibition was applied are mentioned below:

% of inhibition = [(absorbance of the control – absorbance of the test sample) / absorbance of the control] X 100

#### 2.6 Alpha Amylase Inhibitory Assay

Sodium phosphate buffer (0.02 M), 250  $\mu$ l was added with citrus extracts with alpha amylase solution (0.5 mg/mL). Before phosphate buffer was added mixer was pre-incubated for 10 minutes at 25 °C with addition of 1% starch. To stop the reaction, dinitrosalicylic acid was added. After that it was kept in boiling water for 5 minutes which was then cooled to room temperature. The absorbance was taken using a spectrophotometer at 540 nm. Acarbose was used as standard reference.

% Inhibition = [Absorbance of control – Absorbance of extract/Absorbance of control]  $\times 100$  The IC50 or 50% inhibition of enzyme activity was determined.

## 2.7 Molecular Docking

# 2.7.1 Receptor Preparation

The receptors, alpha-amylase (PDB ID: 1BLI), and beta-glucosidase (PDB ID: 3TA9) as PDB format was downloaded from Protein Data Bank. (https://www.rcsb.org/). By using PyMol, water molecules and original ligands were deleted [24, 26]. Autodock tools 1.5.7 was used to prepare the protein; Addition of polar hydrogen, and Kollman charge. The receptors were saved as PDBQT format [27, 28].

#### 2.7.2 Ligand preparation

The 3D structure of ligands, caffeic acid (Pubchem ID: 689043), epicatechin (PubchemID:72276), kaempferol (Pubchem ID: 5280863), quercetin (Pubchem ID: 5280343), rutin hydrate (Pubchem ID: 16218542), trans-cinnamic acid (Pubchem ID: 444539), trans-ferulic acid (Pubchem ID: 445858), gallic acid (Pubchem ID: 370), hesperidin (Pubchem ID: 10621), naringin (Pubchem ID: 442428), nobiletin (Pubchem ID:72344) were downloaded from Pubchem as SDF format (https://pubchem.ncbi.nlm.nih.gov/). PDB format is required for using Autodock tools, therefore using PyMol, SDF files were converted into pdb format. By using Autodock tools 1.5.7, the ligands were prepared for docking and saved as PDBQT file. [28, 29].

## 2.7.3 Grid preparation

The grid menu of Autodock tools was used to calculate the autogrid parameters [29]. The receptor, alphaamylase (PDB ID: 1BLI) was uploaded as pdbqt format and from the grid menu, grid box was selected and a box appeared. The default centers  $X,\,Y,\,Z$ -36.510, 35.680, -8.028 respectively, the grid dimension 40 X 40 X 40, and the spacing 0.375 Å were taken under consideration. The grid files were saved as gpf format [28].

# 2.7.4 Docking

AutoDock Vina is a complete computational docking method based on a quick conformational search and a basic scoring system [29]. The default techniques in AutoDock and AutoDock Vina have been extensively utilized for applications like virtual screening since they are quite efficient for typical drug-like ligands [30]. AutoDock Vina 1.5.7 was run by using command prompt [31], and the docked file was saved as pdbqt format [30].

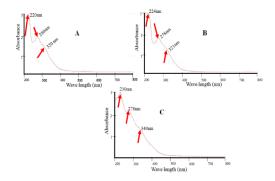
# 2.7.5 Visualization:

For visualizing 2D and 3D structure of docked protein and ligand Bovia Discovery studio client was used 2021 [29].

#### 3. Results

# 3.1 Qualitative analysis

## 3.1.1 Phenol and tannins presence in citrus fruits peel extracts


The following **Table 1** showed the presence of phenolic compounds in several citrus extracts using chemical class test. All samples showed the presence of phenols and tannins.

**Table 1:** Presence of phenol and tannins in all the three citrus fruits peel extracts.

| Sample name - | Name of the Chemical Class |         |  |  |  |
|---------------|----------------------------|---------|--|--|--|
| Sample name   | Phenol                     | Tannins |  |  |  |
| Alichi lebu   | +                          | +       |  |  |  |
| Cagoji lebu   | +                          | +       |  |  |  |
| Kalombo lebu  | +                          | +       |  |  |  |

# 3.1.2 UV-Vis Spectra

The UV-vis spectra provide initial information about the nature of the compounds found in different citrus fruits. This preliminary data serves as a foundation for further analysis and helps researchers understand the types of molecules present in the plant. The information obtained from the UV-vis spectra is then used to identify specific wavelengths that are suitable for monitoring through HPLC. Different compounds absorb light at different wavelengths, and selecting the right wavelengths enhances the accuracy and sensitivity of the HPLC analysis. As anticipated, citrus fruits contain different types of polyphenolic compounds. All the extracts possess flavonoid compounds provided a clear peak at 280nm and/or 330nm in the UV-vis scan data which are the universal  $\gamma_{max}$  for flavonoids. To avoid repetition, we explained only alichi lebu extract scan data. The UV-vis spectrum of the uninfected sample is described in detail. In acidic solution, it exhibits a major band at 330 nm with shoulders at 204, and 259 nm. The band at 330 nm is possibly due to the presence of flavones and/or hydroxycinnamic acid derivatives. On the other hand, in neutral solution, a major band at 330 nm with shoulders at 258, and 280 nm was visible in alichi lebu ethanol extract. The alkali solution showed a very clear peak at 229 and 321 nm with shoulders at 210, and 285nm which indicated the presence of phenolic compounds.



**Figure 1.** UV-Visible scan data of alichi lebu extract in neutral solution (Fig A) showed very clear peak at 220, 280 and a shoulder at 320 nm; in acidic solution (Fig B) peak at 224, 278 nm and a shoulder at 321 nm and in alkali solution (Fig C) showed very clear peak at 230, 278, and a shoulder at 340nm which indicated the presence of phenolic compounds.

3.2 Quantitative analysis for the determination of total phenol, flavonoids content and ortho-diphenol content

# 3.2.1 Determination of total phenol content

The total phenolic content present in the three citrus extracts are represented in the **Table 2**. These extracts possess considerable phenolic contents and are presented as gallic acid equivalent.

**Table 2.** Table for the determination of total phenolic content for Alichi lebu, Cagoji lebu and Kalombo lebu extract

| Sample Name  | mg GAE/ g DW  |
|--------------|---------------|
| Alichi lebu  | 13.958±0.001  |
| Cagoji lebu  | 13.380±0.0005 |
| Kalombo lebu | 11.773±0.001  |

## 3.2.2 Determination of total flavonoids content

The total flavonoids content present in the three citrus extracts are represented in the **Table 3**. These extracts possess considerable amount of flavonoids contents and are presented as quercetin equivalent.

Table 3. Determination of total flavonoids content for alichi lebu, cagoji lebu and kalombo lebu extract

| Sample Name  | mg QAE/ g DW  |
|--------------|---------------|
| Alichi lebu  | 3.324±0.0005  |
| Cagoji lebu  | 2.827±0       |
| Kalombo lebu | $7.589 \pm 0$ |

#### 3.2.3 Determination of ortho-diphenol content

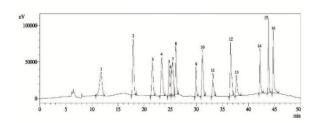
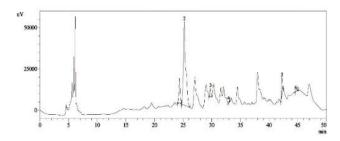
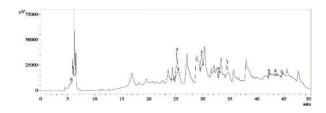

The total ortho-diphenol content present in the three citrus extracts are represented in the **Table 4**. These extracts possess considerable amount of flavonoids contents and are presented as caffeic acid equivalent.

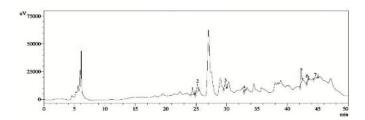
Table 4. Determination of total ortho-diphenol content for alichi lebu, cagoji lebu and kalombo lebu extract


| Sample Name  | mg CAE/ g DW |
|--------------|--------------|
| Alichi lebu  | 0.124±0      |
| Cagoji lebu  | 0.185±0.118  |
| Kalombo lebu | 0.161±0      |

# 3.3 Qualitative and quantitative analysis using HPLC


The **Figure 2** represented the HPL chromatogram of sixteen phenolic compounds. The quantitative analysis of different phenolic antioxidants present in the citrus fruit peel extracts are presented in the **Figure 3**, **Figure 4** and **Figure 5**. Gallic acid, 3,4-dihydroxybenzoic acid, catechin hydrate, catechol, (-) epicatechin and caffeic acid are found in most of the extracts through HPLC-DAD analysis. The amount of these phenolic compounds present in the citrus extracts are shown in the **Table 5**.




**Figure 2:** HPLC chromatogram of standard phenolic compounds presented chronologically- Gallic acid, 3,4-dihydroxybenzoic acid, catechin hydrate, catechol, (-) epicatechin, caffeic acid, vanillic acid, syringic acid, rutin hydrate, *p*-coumaric acid, trans-ferulic acid, rosmarinic acid, myricetin, quercetin, trans-cinnamic acid, kaempferol.



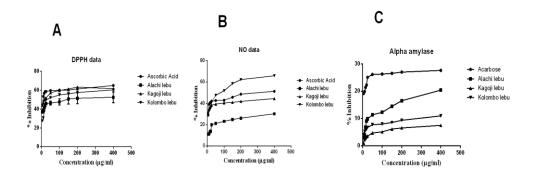
**Figure 3:** HPLC chromatogram of ethanolic extract of **alichi lebu extract**. Peaks: 1, (-) epicatechin; 2, caffeic acid; 3, Rutin hydrate; 4, Trans-ferulic acid; 5, Quercetin; 6, Kaempferol.



**Figure 4:** HPLC chromatogram of ethanolic extract of cagoji lebu extract. Peaks: Peaks: 1, (-) epicatechin; 2, caffeic acid; 3, Rutin hydrate; 4, Trans-ferulic acid; 5, Quercetin; 6, Trans-cinnamic acid; 7, Kaempferol.



**Figure 5:** HPLC chromatogram of ethanolic extract of kalombo lebu extract. Peaks: 1, (-) epicatechin; 2, caffeic acid; 3, Rutin hydrate; 4, Trans-ferulic acid; 5, Quercetin; 6, Trans-cinnamic acid; 7, Kaempferol.


**Table 5.** HPLC quantification of phenolic compounds present in alichi lebu, cagoji lebu and kalombo lebu peel extracts

| Serial | Name of the standard      | Al (mg/100 g dry  | Cl (mg/100 g dry | Kal (mg/100 g dry |
|--------|---------------------------|-------------------|------------------|-------------------|
| no.    | compound                  | extract)          | extract)         | extract)          |
| 1      | Gallic acid               | =                 | -                | -                 |
| 2      | 3,4-dihydroxybenzoic acid | -                 | -                | -                 |
| 3      | Catechin hydrate          | -                 | -                | -                 |
| 4      | Catechol                  | -                 | -                | -                 |
| 5      | (-) epicatechin           | $85.95 \pm 0.40$  | $25.19 \pm 0.84$ | $60.85 \pm 0.24$  |
| 6      | Caffeic acid              | $271.68 \pm 1.46$ | $24.94 \pm 0.77$ | $69.62 \pm 0.19$  |
| 7      | Vanillic acid             | -                 | -                | -                 |
| 8      | Syringic acid             | -                 | -                | -                 |
| 9      | Rutin hydrate             | $15.25 \pm 0.14$  | $18.68 \pm 0.73$ | $45.89 \pm 0.27$  |
| 10     | P-coumaric acid           |                   |                  |                   |
| 11     | Trans-ferulic acid        | $1.08 \pm 0.03$   | $1.49 \pm 0.44$  | $6.57 \pm 0.01$   |
| 12     | Rosmarinic acid           | -                 | -                | -                 |
| 13     | Myricetin                 | -                 | -                | -                 |
| 14     | Quercetin                 | $15.92 \pm 0.17$  | $15.21 \pm 0.31$ | $3.08 \pm 0.04$   |
| 15     | Trans-cinnamic acid       | -                 | $1.25 \pm 0.12$  | $1.09 \pm 0.26$   |
| 16     | Kaempferol                | $0.50 \pm 0.04$   | $2.58 \pm 0.36$  | 0.68 0.03         |

# 3.4 Free radical scavenging and enzyme inhibition assays

Free radicle scavenging activity are represented in **Figure 6**. All the extracts showed considerable free radicle activities in DPPH and NO scavenging assay system (**Figure 6A** and **Figure B**). The DPPH scavenging system showed that the ascorbic acid is a strong scavenger of DPPH free radicles with  $IC_{50}$  value 15.40 µg/mL, whereas the alichi lebu, cagoji lebu and kalombo lebu extracts showed comparable DPPH free radicles with  $IC_{50}$ 

value 32.32, 31.69, and 24.65 μg/mL respectively (**Table 6**). Similar trend was also seen in NO scavenging assay system (**Figure 6B**). The ascorbic acid was the strongest scavenger of NO compared to the alichi lebu, cagoji lebu and kalombo lebu extracts. However, the IC50 values for all the extracts were also considerably close to the ascorbic acid (**Table 6**). All citrus peel extracts also showed strong inhibitory activity in α-amylase inhibition assay compared to acarbose (**Figure 6C**). The acarbose IC50 value for α-amylase inhibition assay was 25.53 μg/mL, whereas the alichi lebu, cagoji lebu and kalombo lebu extracts showed considerable IC<sub>50</sub> values (56.45, 39.97 and 55.31 μg/mL respectively) (**Table 6**).



**Figure 6:** Effect of DPPH scavenging, NO scavenging and alpha amylase inhibitory assays in alichi lebu, cagoji lebu and kalombo lebu extract.

|  | <b>Table 6:</b> The IC <sub>50</sub> | values of alichi lebu. | cagoji lebu and kalombo | lebu in different assay systems |
|--|--------------------------------------|------------------------|-------------------------|---------------------------------|
|--|--------------------------------------|------------------------|-------------------------|---------------------------------|

| , , ,                          | , ,                   |                     |  |  |
|--------------------------------|-----------------------|---------------------|--|--|
| Assay name                     | Ethanolic extracts of | IC50 value (µg/ mL) |  |  |
|                                | Alichi lebu           | 32.32               |  |  |
| DDDII Cassanging Assay         | Cagoji lebu           | 31.69               |  |  |
| DPPH Scavenging Assay          | Kolombo lebu          | 24.65               |  |  |
|                                | Ascorbic acid         | 15.40               |  |  |
| NO Scavenging Assay            | Alichi lebu           | 56.20               |  |  |
|                                | Cagoji lebu           | 27.98               |  |  |
|                                | Kolombo lebu          | 60.41               |  |  |
|                                | Ascorbic acid         | 22.31               |  |  |
| Alula Assalasa Tabibisana Assa | Alichi lebu           | 56.45               |  |  |
|                                | Cagoji lebu           | 39.97               |  |  |
| Alpha Amylase Inhibitory Assay | Kolombo lebu          | 55.31               |  |  |
|                                | Acarbose              | 25.53               |  |  |

# 3.5 The docking study for the phenolic compound present in the extracts of alichi lebu, cagoji lebu and kalombo lebu peel.

The binding parameters of various polyphenolic compounds are presented in the **Table 7** and **Table 8** for the alpha-amylase and beta-glucosidase enzymes. Best rank poses of interaction of  $\alpha$ -amylase and beta-glucosidase enzymes with various polyphenolic compounds are presented in **Figure 7**, **Figure 8** and **Figure 9**.

 Table 7. Binding parameters of citrus components with the alpha-amylase

| Receptor          | Ligand                        | Affinity<br>Kcal/mol | Number of<br>Hydrogen<br>bonds | Residue | Amino Acid | Distance<br>(Å) |
|-------------------|-------------------------------|----------------------|--------------------------------|---------|------------|-----------------|
|                   | C 66 : .1                     |                      |                                | A: 138  | TRP        | 2.49            |
|                   | Caffeic acid                  | -6.4                 | 3                              | A: 163  | THR        | 2.44            |
|                   | Pubchem ID: 689043            |                      |                                | A: 164  | ASP        | 2.44            |
|                   | Epicatechin                   | -7.5                 | 2                              | A: 164  | ASP        | 2.13            |
|                   | Pubchem ID: 72276             | -7.3                 | 2                              | A: 106  | LYS        | 2.89            |
|                   |                               |                      |                                | A: 231  | ASP        | 2.63            |
|                   | Kaempferol                    | -7.6                 | 4                              | A: 263  | TRP        | 1.91            |
|                   | Pubchem ID: 5280863           | -7.0                 |                                | A: 261  | GLU        | 2.46            |
|                   |                               |                      |                                | A: 334  | SER        | 2.15            |
| Alpha-<br>amylase | Quercetin Pubchem ID: 5280343 | -7.6                 | 1                              | A: 261  | GLU        | 2.1             |
| (1BLI)            | Rutin hydrate                 | -9.1                 | 6                              | A: 4    | ASN        | 2.01            |
|                   |                               |                      |                                | A: 5    | GLY        | 2.73            |
|                   |                               |                      |                                | A: 98   | TYR        | 2.18            |
|                   | Pubchem ID: 16218542          | -9.1                 |                                | A: 317  | PRO        | 2.33            |
|                   |                               |                      |                                | A: 318  | LYS        | 2.29            |
|                   |                               |                      |                                | A: 319  | LEU        | 2.3             |
|                   | Transcinnamic acid            | -5.9                 | 2                              | A: 108  | GLY        | 2.81            |
|                   | Pubchem ID: 444539            | -3.9                 | 2                              | A: 109  | ALA        | 2.05            |
|                   | Transferulic acid             |                      | 3                              | A:109   | ALA        | 2.07            |
|                   | Pubchem ID: 445858            | -6.5                 |                                | A: 109  | ALA        | 2.31            |
|                   | Pubchem ID: 445858            |                      |                                | A: 138  | TRP        | 2.28            |

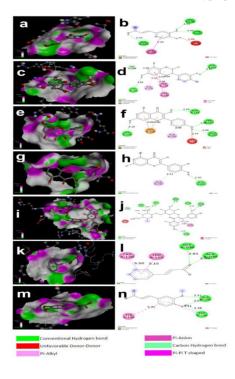
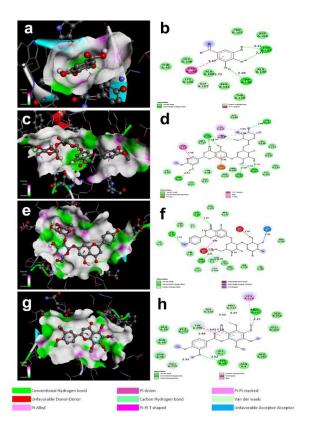
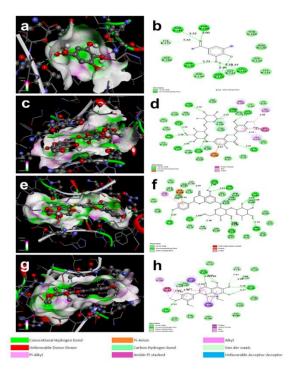

Note: ALA: Alanine, ASP: Aspartic acid, ASN: Asparagine, GLN: Glutamine, GLU: Glutamic acid, GLY: Glycine, LEU: Leucine, LYS: Lysine, PRO: Proline, SER: Serine, THR: Threonine, TRP: Tryptophan, TYR: Tyrosine.

Table 8. Binding parameters of citrus components with the alpha-amylase and beta glucosidase


|                  |                       |          | Number of |         |       |          |
|------------------|-----------------------|----------|-----------|---------|-------|----------|
| Receptor         | Ligand                | Affinity | Hydrogen  | Residue | Amino | Distance |
|                  | 2.igunu               | Kcal/mol | bonds     |         | Acid  | (Å)      |
|                  | Gallic acid           |          |           | A: 163  | THR   | 2.21     |
|                  | Pubchem ID:           |          |           | A:163   | THR   | 2.21     |
|                  | 370                   | -6.2     | 3         | A:138   | TRP   | 2.29     |
|                  |                       |          |           | A:53    | ASP   | 2.42     |
|                  |                       |          |           | A:193   | TYR   | 3.02     |
|                  |                       |          |           | A:232   | ALA   | 2.90     |
|                  |                       |          |           | A:261   | GLU   | 2.14     |
|                  | Hesperidin            |          |           | A:261   | GLU   | 2.23     |
|                  | (Pubchem ID:          | -9.7     | 8         | A:334   | SER   | 2.54     |
|                  | 10621)                |          |           | A:334   | SER   | 2.98     |
| Alpha-amylase    |                       |          |           | A:334   | SER   | 3.19     |
| (1BLI)           | Naringin              |          |           | A:94    | ASP   | 2.32     |
|                  | (Pubchem ID:          | -8.9     | 3         | A:98    | TYR   | 3.19     |
|                  | 442428)               |          | 3         | A:320   | SER   | 2.25     |
|                  | Nobiletin             |          |           | A:98    | TYR   | 3.03     |
|                  | (Pubchem<br>ID:72344) | -7.2     | 2         | A:357   | GLY   | 3.35     |
|                  |                       |          |           | A:129   | GLN   | 2.40     |
|                  |                       |          |           | A:129   | GLN   | 3.10     |
|                  | Gallic acid           |          |           | A:131   | LYS   | 2.37     |
|                  | Pubchem ID:           |          |           | B:135   | THR   | 2.77     |
|                  | 370                   | -6.3     | 6         | B:184   | THR   | 3.22     |
|                  |                       |          |           | B:189   | THR   | 3.00     |
|                  |                       |          |           | A:132   | GLY   | 2.31     |
|                  |                       |          |           | A:135   | THR   | 2.58     |
|                  |                       |          |           | A:129   | GLN   | 3.14     |
| Beta-glucosidase | Hesperidin            |          |           | A:183   | GLY   | 2.11     |
| (3TA9)           | (Pubchem ID:          | -12.4    | 8         | B:41    | THR   | 3.25     |
|                  | 10621)                | -12.4    | •         | B:129   | GLN   | 3.00     |
|                  |                       |          |           | B:189   | THR   | 2.70     |
|                  |                       |          |           | A:41    | THR   | 3.07     |

|                             |              |       |       | A:129 | GLN  | 2.46 |
|-----------------------------|--------------|-------|-------|-------|------|------|
|                             | Naringin     |       |       | A:132 | GLY  | 2.69 |
|                             | (Pubchem ID: | -11.8 | 7     | A:185 | LYS  | 3.18 |
|                             | 442428)      |       |       | A:185 | LYS  | 3.09 |
|                             |              |       |       | B:126 | GLN  | 2.90 |
|                             |              |       |       | B:182 | PRO  | 2.42 |
|                             |              |       |       | A:129 | GLN  | 3.06 |
|                             | N-1-11-4:    |       |       | A:129 | GLN  | 3.27 |
| Nobiletin (Pubchem ID:72344 |              |       | B:129 | GLN   | 2.89 |      |
|                             | -8.9         | 5     | B:129 | GLN   | 3.23 |      |
|                             | 10.72344     |       |       | B:44  | LYS  | 3.13 |


Note: ALA: Alanine, ASP: Aspartic acid, ASN: Asparagine, GLN: Glutamine, GLU: Glutamic acid, GLY: Glycine, LEU: Leucine, LYS: Lysine, PRO: Proline, SER: Serine, THR: Threonine, TRP: Tryptophan, TYR: Tyrosine.



**Figure 7.** Best rank poses of interaction of α-amylase and caffeic acid 3D (a) and 2D (b); α-amylase and epicatechin 3D (c) and 2D (d); α-amylase and kaempferol 3D (e) and 2D (f); α-amylase and quercetin 3D (g) and 2D (h), α-amylase and rutin hydrate 3D (i) and 2D (j), α-amylase and trans-cinnamic acid 3D (k) and 2D (l), α-Amylase and trans-ferulic acid 3D (m) and 2D (n).



**Figure 8.** Best rank poses of interaction of  $\alpha$ -amylase and gallic acid 3D (a) and 2D (b);  $\alpha$ -amylase and hesperidin 3D (c) and 2D (d);  $\alpha$ -amylase and naringin 3D (e) and 2D (f);  $\alpha$ -amylase nobiletin 3D (g) and 2D (h).



**Figure 9.** Best rank poses of interaction of beta-glucosidase and gallic acid 3D (a) and 2D (b); beta-glucosidase and hesperidin 3D (c) and 2D (d); beta-glucosidase and naringin 3D (e) and 2D (f); beta-glucosidase and nobiletin 3D (g) and 2D (h).

#### 4. Discussion

Phytochemicals such as phenols, are found in plants that work with nutrients, contribute to flavor and color, dietary fibers to protect human against diseases through antioxidant activity and reduce the risk of many diseases [32]. Various citrus fruits, including, alichi, cagoji and kalombo lebu extract screening to detect the presence of phenolic components. The chemical class test revealed the presence of phenolic compounds such as phenols and their water-soluble naturally synthesized derivatives tannins in the citrus fruit extracts as anticipated from their color. The results are predictable and also justified from the previous articles [33]. The UV-scan data has followed the chemical group test results and provided peak and shoulder at 280 and 330 nm and near which were the universal wavelength for phenolic compounds [34]. Though, the chemical test and UV scan data are very tentative but we got the preliminary idea about the chemical constituents of the extracts. Phenolic compounds, such as flavonoids, hydroxylated polyphenolic compounds, perform crucial roles in plants, such as attracting pollinating insects, combating environmental stresses like microbial infection, and regulating cell growth. Among the six major subclasses of flavonoids—anthocyanidins, flavan-3-ols, flavanols, flavanones, flavones, and isoflavones flavanols are the most prevalent in the human diet [35]. It has been suggested that consuming up to 1 g of polyphenolic compounds daily may have inhibitory effects on human carcinogenesis and mutagenesis because of their capacity to neutralize free radicals [36]. Phenolic compounds, such flavonoids and phenolic acids, attach covalently to alpha-amylase and change its activity because they can react with nucleophilic groups on the enzyme molecule to produce quinones or lactones [37].

The DPPH assay is widely used to evaluate an antioxidant product's or molecule's capacity to scavenge free radicals. It is regarded as one of the most common simple colorimetric techniques for assessing the antioxidant qualities of both natural and purified substances [38]. A stable free radical with the capacity to take an electron, DPPH gives solutions a pink or purple color. DPPH changes from pink/purple to yellow when an antioxidant gives it an electron, making it a stable diamagnetic molecule [39]. Spectrophotometric monitoring of the color shift is used to determine the characteristics associated with antioxidant capabilities. Various extracts of citrus demonstrated dose-dependent free radical scavenging activity in contrast to ascorbic acid (used as standard) in the DPPH free radical scavenging assay. The figure illustrates how an increase in ascorbic acid and citrus extract concentration in the DPPH causes an increase in the percentage of inhibition. In this investigation, the standard ascorbic acid exhibited an IC<sub>50</sub> value of 15.40 μg/ml, whereas the ethanolic extract of three distinct citrus extracts, alichi lebu, cagoji lebu, and kolombo lebu, demonstrated significant free radical scavenging activity with IC<sub>50</sub> values of 32.32 µg/ml, 31.69 µg/ml, and 24.65 µg/ml, respectively. The kolombo lebu extract has a lower IC<sub>50</sub> value than the cagoji and alichi lebu. The lower IC<sub>50</sub> of the kolombo lebu extract may be due to the higher concentration of total flavonoids content which was mentioned in **Table 2.2**. The sequence in which these three citrus fruits scavenged the DPPH free radicles was as follows: kolombo lebu>cagoji lebu>alichi lebu. Rest of the two citrus extracts have strong antioxidant capacity, as indicated by their IC<sub>50</sub> values, though they are not significantly higher than ascorbic acid.

Nitric oxide modulates a variety of physiological processes, including neural signaling, smooth muscle relaxation, platelet aggregation inhibition, and cell-mediated toxicity regulation [40]. Different molecules generated from nitric oxide, such as nitroxyl anion, nitrosonium cation, higher oxides of nitrogen, S-nitrosothiols, and dinitrosyl iron complexes, are referred to as reactive nitrogen species (RNS). Increased RNS has been linked to nitrosative stress, which can cause cell damage and death [41]. The production of reactive peroxynitrite ('ONOO') by NO' reactions intensify its toxicity and damage, and it can generate major toxic interactions with biomolecules. Scavenging NO helps to stop a series of harmful reactions that are brought on by excessive NO production [42]. Three extracts of citrus reduced the amount of nitrite generated from sodium nitroprusside and the scavenging potential was found to increase in concentration dependent manner. In this investigation, the standard ascorbic acid exhibited an IC<sub>50</sub> value of 22.31 μg/ml for NO scavenging assay. Except the ethanolic extract of cagoji lebu, other two citruses, alichi lebu, and kolombo lebu, demonstrated high IC<sub>50</sub> value for NO scavenging activity, (IC<sub>50</sub> values of 56.20 μg/ml, and 60.41 μg/ml, respectively). Cagoji lebu has lower IC<sub>50</sub> which indicates strong NO scavenging activity. Though, alichi lebu and kolombo lebu possess high IC<sub>50</sub> value

than ascorbic acid, they have also strong NO scavenging activity and antioxidant capacity. So, this study suggests, these three citrus extracts have strong NO scavenging activity and strong antioxidant effect compared with ascorbic acid. The sequence of scavenging activity was as follows: cagoji lebu>alichi lebu>kolombo lebu.

High blood sugar levels, which can lead to major issues with the kidneys, eyes, and cardiovascular system, are a hallmark of diabetes. Thus, lowering blood sugar swings and ameliorating the physiological problems are the major goals of diabetes treatment [40]. The enzyme  $\alpha$ -amylase makes glucose in the blood more bioavailable. Postprandial glucose levels are raised when α-amylases hydrolyze complex polysaccharides into oligosaccharides and disaccharides. α-glycosidase then hydrolyzes these precursors into monosaccharides, which are absorbed by the small intestine and into the hepatic portal vein [43]. According to reports, inhibiting  $\alpha$ -amylase lowers glucose's bioavailability, which may help individuals with non-insulin dependent diabetes mellitus (NIDDM) improve their defective glucose metabolism and minimize postprandial hyperglycemia without increasing insulin secretion [44]. One commercially available enzyme inhibitor for type II diabetes is called acarbose. However, a number of secondary effects, including flatulence, diarrhea, and stomach distention, have been recorded. There is growing interest in the search for safe and efficient inhibitors derived from natural sources [37]. The  $\alpha$ -amylase inhibitory activity of three extracts and acarbose were shown to rise in a concentration-dependent way. The IC<sub>50</sub> value of acarbose for α-amylase inhibition was 25.53 µg/mL. The IC<sub>50</sub> value of the extracts of alichi lebu, cagoji lebu, and kolombo lebu were followed the similar pattern as acarbose for  $\alpha$ -amylase inhibition. The result suggested that all the selected citrus extracts assumed to be potential for  $\alpha$ -amylase inhibitory capability. The presence of various phenolics and flavonoids may be the cause of the inhibitory potentials against the target enzymes.

Furthermore, the docking results showed that the phenolic compounds which were identified and quantified using HPLC technique had a great affinity to the  $\alpha$ -amylase enzyme binding. Other common citrus components were taken under the consideration of docking to identify their affinity towards  $\alpha$ -amylase and  $\beta$ -glucosidase. In computational study, caffeic acid, epicatechin, kaempferol, quercetin, rutin hydrate, trans-cinnamic acid, transferulic acid, bind strongly with  $\alpha$ -amylase (1BLI) by forming hydrogen bonds, rmsd was 0. Among the mentioned components, rutin hydrate showed the highest binding affinity (-9.1 Kcal/mol) towards  $\alpha$ -amylase and formed 6 hydrogen bonds with  $\alpha$ -amylase. Other citrus components like gallic acid, hesperidin, naringin, nobiletin also bind with  $\alpha$ -amylase and  $\beta$ -glucosidase (3TA9) strongly by forming strong hydrogen bonds. Among these four components hesperidin binds with  $\alpha$ -amylase (9BLI) with the highest binding affinity (-9.1 Kcal/mol) and eight hydrogen bonds; and hesperidin binds with the binding affinity (-12.4 Kcal/mol) and forms eight hydrogen bonds with  $\beta$ -glucosidase.

#### 5. Conclusions

The escalating costs of prescribed drugs aimed at preserving health and well-being have sparked a renewed interest in traditional medicines within healthcare system. This underscores the enduring importance of plant-based traditional medicine in human healthcare for the future. Presently, a large proportion of the global population relies on herbal remedies as an integral part of their medical regimen. Additionally, medicines derived from plants offer potential advantages such as reduced costs, lower toxicity levels, or even complete absence of toxicity, facilitated by bioprospecting. The results showed that the peels extract of various citrus fruits are a good source of antioxidant phenolic compounds which also possess considerable enzyme inhibitory activities related to carbohydrate digestion. Thus, these extracts could be used as potential anti-diabetic food supplements.

**Author Contributions:** Conceptualization, NS, MAA and MA; methodology, MA, AUHS, MDH, KSA; software, AUHS, KSA.; validation, MDH, HH, KA, AAR and MAA; formal analysis, MA, AUHS, KA; investigation, MDH, KSA, MA, AUHS; resources, MAA, NS; data curation, AAR, NS, MAA; writing—original draft preparation, KA, NS, MAA; writing—review and editing, MAA, NS; supervision, HH, MAA, NS; project administration, AAR, MAA, NS; funding acquisition, NS. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CTRG grant to Dr. Nusrat Subhan, from the North South University.

**Institutional Review Board Statement:** Not applicable.

Data Availability Statement: Data used in this study will be available upon reasonable request from the corresponding author

**Acknowledgments:** Authors are gratefully acknowledging the logistic support from the Department of Pharmaceutical Sciences, North South University.

**Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

#### References

- Dastmalchi, K.; Dorman, H. D.; Oinonen, P. P.; Darwis, Y.; Laakso, I.; Hiltunen, R. Chemical composition and *in vitro* antioxidative activity of a lemon balm (*Melissa officinalis* L.) extract. *LWT-Food Sci Technol* 2008, 41, 391-400
- 2. Volpe, C. M. O.; Villar-Delfino, P. H.; Dos Anjos, P. M. F.; Nogueira-Machado, J. A. Cellular death, reactive oxygen species (ROS) and diabetic complications. *Cell Death Dis* **2018**, *9*, 119-119
- Lourenco, S. C.; Moldao-Martins, M.; Alves, V. D. Antioxidants of natural plant origins: from sources to food industry applications. *Molecules* 2019, 24, 4132
- 4. Kaneto, H.; Katakami, N.; Matsuhisa, M.; Matsuoka, T. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. *Mediators Inflamm* **2010**, *2010*, 453892.
- Yang, J.; Guo, J.; Yuan, J. (2008) In vitro antioxidant properties of rutin. LWT-Food Sci Technol 2008, 41, 1060-1066.
- Haraoui, N.; Allem, R.; Chaouche, T. M.; Belouazni, A. *In-vitro* antioxidant and antimicrobial activities of some varieties citrus grown in Algeria. *Adv Tradit Med* 2020, 20, 23-34
- 7. Jayaprakasha, G.; Patil, B. S. *In vitro* evaluation of the antioxidant activities in fruit extracts from citron and blood orange. *Food Chem* **2007**, *101*, 410-418
- 8. Gulcin, I.; Beydemir, S.; Alici, H. A.; Elmastas, M.; Buyukokuroglu, M. E. *In vitro* antioxidant properties of morphine. *Pharmacol Res* **2004**, *49*, 59-66
- 9. Suttirak, W.; Manurakchinakorn, S. *In vitro* antioxidant properties of mangosteen peel extract. *J Food Sci Technol* **2014**, *51*, 3546-3558
- 10. Fang, H.; Zhang, H.; Wei, X.; Ye, X.; Tian, J. Phytochemicals and antioxidant capacities of young citrus fruits cultivated in China. *Molecules* **2022**, *27*, 5185
- 11. Rafiq, S.; Kaul, R.; Sofi, S. A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G. **2018** Citrus peel as a source of functional ingredient: A review. *J Saudi Soc Agric Sci* **2018**, *17*, 351-358
- 12. Su, D.; Liu, H.; Zeng, Q.; Qi, X.; Yao, X.; Zhang, J. Changes in the phenolic contents and antioxidant activities of citrus peels from different cultivars after *in vitro* digestion. *Int J Food Sci Technol* **2017**, *52*, 2471-2478
- 13. KunduSen, S.; Saha, P.; Bhattacharya, S.; Bala, A.; Mazumder, U. K.; Gupta, M.; Haldar, P. K. Evaluation of *in vitro* antioxidant activity of *Citrus limetta* and *Citrus maxima* on reactive oxygen and nitrogen species. Pharmacologyonline **2010**, *3*, 850-857

- 14. Oboh, G.; Ademosun, A. Characterization of the antioxidant properties of phenolic extracts from some citrus peels. *J Food Sci Technol* **2012**, *49*, 729-736
- Yi, Z.; Yu, Y.; Liang, Y.; Zeng, B. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium Citri Reticulatae of a new citrus cultivar and its main flavonoids. LWT-Food Sci Technol 2008, 41, 597-603
- 16. Alam, M. A.; Subhan, N.; Rahman, M. M.; Uddin, S. J.; Reza, H. M.; Sarker, S. D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. *Adv Nutr* **2014**, *5*, 404-417.
- 17. Tiwari, A. K.; Rao, J. M. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. *Curr Sci*, **2002**, *83*, 30-38
- 18. Loizzo, M. R.; Leporini, M.; Sicari, V.; Falco, T.; Pellicanò, T. M.; Tundis, R. Investigating the *in vitro* hypoglycaemic and antioxidant properties of *Citrus clementina* Hort. juice. *Eur Food Res Technol* **2018**, 244, 523-534
- Tundis, R.; Loizzo, M. R.; Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. *Mini Rev Med Chem* 2010, 10, 315-331.
- 20. Alkhalidy, H.; Wang, Y.; Liu, D. Dietary flavonoids in the prevention of T2D: an overview. *Nutrients* **2018**, *10*, 438.
- 21. Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; De Freitas, V. Wine flavonoids in health and disease prevention. *Molecules* **2017**, *22*, 292
- 22. Kashtoh, H.; Baek, K.-H. New insights into the latest advancement in α-amylase inhibitors of plant origin with anti-diabetic effects. *Plants* **2023**, *12*, 2944
- 23. Ahmed, K. S.; Jahan, I.A.; Jahan, F.; and Hossain, H. Antioxidant activities and simultaneous HPLC-DAD profiling of polyphenolic compounds from *Moringa oleifera* Lam. *Food Res* **2021**, *5*, 401-408
- 24. Alam, M. A.; Ghani, A.; Subhan, N.; Rahman, M. M.; Haque, M. S.; Majumder, M. M.; Majumder, M. E. H.; Akter, R. A.; Nahar, L.; Sarker, S. D. Antioxidant and membrane stabilizing properties of the flowering tops of *Anthocephalus cadamba*. *Nat Prod Commun* **2008**, *3*, 65-70.
- Jahan, I.; Islam, M. D.; Sarif, S.; Amena, I. J.; Shuvo, A.U.H.; Akter, N.; Chowdhury, F. I.,; Akter, R.; Ahmed, I.; Khan, F.; Subhan, N.; Alam, M. A. Tempol alters antioxidant enzyme function, modulates multiple genes expression, and ameliorates hepatic and renal impairment in carbon tetrachloride (CCl<sub>4</sub>)-intoxicated rats, Livers 2023, 3, 105-120.
- 26. Zhu, W.; Li, Y.; Zhao, J.; Wang, Y.; Li, Y.; Wang, Y. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann Med 2022, 54, 541-552
- 27. Verma, D.; Mitra, D.; Paul, M.; Chaudhary, P.; Kamboj, A.; Thatoi, H.; Janmeda, P.; Jain, D.; Panneerselvam, P.; Shrivastav, R.; Pant, K.; Das Mohapatra, P. K. Potential inhibitors of SARS-CoV-2

- (COVID 19) proteases PL(pro) and M(pro)/ 3CL(pro): molecular docking and simulation studies of three pertinent medicinal plant natural components. *Curr Res Pharmacol Drug Discov* **2021**, 2, 100038.
- El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F. H.; Nemer, G. AutoDock and AutoDock tools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. *Methods Mol Biol* 2017, 1598, 391-403
- 29. Forli, S.; Huey, R.; Pique, M. E.; Sanner, M. F.; Goodsell, D. S.; Olson, A. J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. *Nat Protoc* **2016**, *11*, 905-919
- 30. Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J Comput Chem* **2010**, *31*, 455-461.
- 31. Cosconati, S.; Forli, S.; Perryman, A. L.; Harris, R.; Goodsell, D. S.; Olson, A. J. Virtual Screening with AutoDock: Theory and Practice. *Expert Opin Drug Discov* **2010**, *5*, 597-607.
- 32. Dassault Systems. 2021 Free download: BIOVIA Discovery Studio Visualize.
- 33. Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R. P.; Chang, C.-M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of *Ficus religiosa*. *Molecules* **2022**, *27*, 1326.
- 34. Rojas-Lema, S.; Torres-Giner, S.; Quiles-Carrillo, L.; Gomez-Caturla, J.; Garcia-Garcia, D.; Balart, R. On the use of phenolic compounds present in citrus fruits grapes as natural antioxidants for thermo-compressed bio-based high-density polyethylene films. *Antioxidants* **2021**, *10*, 14.
- 35. Haminiuk, C. W.; Plata-Oviedo, M. S.; de Mattos, G.; Carpes, S. T.; Branco, I. G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. *J Food Sci Technol* **2014**, *51*, 2862-2866
- Xiao, J. Recent advances in dietary flavonoids for management of type 2 diabetes. Curr Opin Food Sci 2022,
   44, 100806
- 37. Kumar, A.; Lakshman, K.; Jayaveera, K.; VB, N. S.; Khan, S.; Velumurga, C. *In vitro* α-amylase inhibition and antioxidant activities of methanolic extract of *Amaranthus caudatus* Linn. *Oman Med J* **2011**, 26, 166.
- 38. Oyedemi, S. O.; Oyedemi, B. O.; Ijeh, I. I.; Ohanyerem, P. E.; Coopoosamy, R. M.; Aiyegoro, O. A. Alphaamylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. *Sci World J* **2017**, *2017*, 3592491.
- 39. Mishra, K.; Ojha, H.; Chaudhury, N. K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. *Food Chem* **2012**, *130*, 1036-1043
- 40. Saffoon, N.; Uddin, R.; Subhan, N.; Hossain, H.; Reza, H. M.; Alam, M. A. *In vitro* anti-oxidant activity and HPLC-DAD system based phenolic content analysis of *Codiaeum variegatum* found in Bangladesh. *Adv Pharm Bull* **2014**, *4*, 533-541.

- 41. Singh, D.; Mishra, M.; Gupta, M.; Singh, P.; Gupta, A.; Nema, R. Nitric oxide radical scavenging assay of bioactive compounds present in methanol extract of *Centella asiatica*. *Int J Pharm Sci Res* **2012**, *2*, 42-44
- 42. Martinez, M. C.; Andriantsitohaina, R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. *Antioxid Redox Signal* **2009**, *11*, 669-702
- 43. Abirami, A.; Nagarani, G.; Siddhuraju, P. *In vitro* antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from *Citrus hystrix* and *C. maxima* fruits. *Food Sci Hum Well* **2014**, *3*, 16-25
- 44. Uddin, N.; Hasan, M. R.; Hossain, M. M.; Sarker, A.; Hasan, A. N.; Islam, A. M.; Chowdhury, M. M. H.; Rana, M. S. *In vitro* α–amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of *Citrus macroptera* Montr. fruit. *Asian Pac J Trop Biomed* 2014, 4, 473-479